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Abstract. The problem of fibril (fibre) formation in chiral systems is explored theoretically being supported
by experiments on synthetic de novo 11-mer peptide forming self-assembled β-sheet tapes. Experimental
data unambiguously indicate that the tapes form fibrils of nearly monodisperse thickness ca. 8-10 nm.
Fibril formation and stabilisation are attributed to inter-tape face-to-face attraction and their intrinsic
twist, correspondingly. The proposed theory is capable of predicting the fibril aggregation number and its
equilibrium twist in terms of molecular parameters of the primary tapes. The suggested novel mechanism
of twist stabilisation of finite aggregates (fibrils) is different to the well-known stabilisation of micelles in
amphiphilic systems, and it is likely to explain the formation and stability of fibrils in a wide variety of
systems including proteinaceous amyloid fibres, sickle-cell hemoglobin fibres responsible for HbS anemia,
corkscrew threads found in chromonics in the presence of chiral additives and native cellulose microfibrillar
crystallites. The theory also makes it possible to extract the basic molecular parameters of primary tapes
(inter-tape attraction energy, helical twist step, elastic moduli) from the experimental data.

PACS. 36.20.Ey Conformation – 61.46.+w Clusters, nanoparticles, and nanocrystalline materials –
87.15.-v Biomolecules: structure and physical properties

1 Introduction

Most of natural peptides are linear polymers containing L-
aminoacid residues [1,2]. The peptide secondary structure
(alpha-helix or beta-sheet, Figs. 1b, c) is determined by
regular arrangements of hydrogen bonds as well as side-
chain interactions. The same peptide sometimes can ex-
ist in different conformations: random coils, α-helices and
β-sheets (see Figs. 1a, b, c) depending on solution con-
ditions such as temperature, pH, ionic strength, solvent
composition.

Experimentally, we deal with solutions of identical syn-
thetic de novo peptide molecules (DN1) which, if the
peptide concentration is not very low, self-assemble into
long β-sheet structures (ribbon-like ‘tapes’, Figs. 1c, d)
due to inter-molecular hydrogen-bonds and side chain at-
traction [3–5] (see Sect. 3 for more details). Note that
individual peptides in the tape adopt stretched rod-like
conformation. The rationally designed primary structure
of DN1 molecules ensures that the tape structure is nearly
perfect: all peptides are aligned and connected in the
same way (Fig. 1c); defects like shown in Figure 1e are
extremely rare. The tapes are typically very long (up
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to several micrometers length at high enough concentra-
tions), Figure 2a. The ends of side groups of the peptides
which form the side surfaces of the tapes can attract each
other, hence a possibility of stacked β-structures (which
may look like fibrils) – many-folded aggregates of parallel
tapes, Figure 1f.

In practice thread-like fibrils stabilized by face-to-face
attraction between the tapes are indeed often observed
in DN1 solutions, Figure 2b. The most striking feature
is that the thickness of fibrils is finite and is practi-
cally monodisperse. From the first sight, this seems unex-
pected as usually an attraction between molecules results
in formation of infinite aggregates, i.e. ultimate phase sep-
aration (e.g. precipitation of liquid or crystalline phases
in the case of small molecules, or precipitation of poly-
mer globules in the case of macromolecules) or in forma-
tion of strongly polydisperse one-dimensional aggregates
as for the case of living polymers when the monomers are
capable of formation of two bonds (the primary tapes,
Fig. 1c, under consideration are an example of such liv-
ing polymer). Thus with face-to-face attraction between
tapes, one should expect formation of very thick reams
and even infinite stacks at high enough concentration,
Figure 3a. However, experiments indicate that the fib-
ril thickness is finite (Figs. 2b, c): each fibril is formed
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Fig. 1. Schematic representation of the classical types of secondary structures adopted by linear peptide molecules consisting
of L-aminoacids: random coil (a), alpha-helix (b), beta-sheet (c). Schematic picture of an antiparallel β-sheet structure formed
by self-assembled peptides (c), i.e. a tape (d). A defect in a beta-sheet (e), a stack of sheets (tapes) (f). Each aminoacid residue
is drawn by two consequent segments in (a, b) and by one segment in (c, e). The hydrogen bonds are drawn by dotted lines.
Individual tape sizes are determined by the geometry of the peptide in a rod-like conformation (a1 × b × c), see (d, f). The
primary tape trajectory can be described by the orientation of the cotangent vector t and by the unit vector n locally normal
to the side surface of the tape (d).

Fig. 2. Structures formed in solutions of DN1 peptide in pure water as revealed by electron microscope. The images (a) of
ribbons (c = 0.2 mM), and (b) of fibrils (c = 6.2 mM) were obtained with four-month aged solutions after platinum rotary
shadowing. The area surrounded with the white rectangular in (b) is shown zoomed by 200% in (c), where the positions of the
characteristic crew-like patterns on the fibril are indicated with white arrows. Micrograph (d) (c = 6.2 mM) shows two fibrils
combining into a rope-like fibre; it was obtained with a one-month aged solution after uranyl acetate negative staining.

by about a dozen of tapes assembled together. Such
behavior resembles micellization in amphiphilic systems
(like in surfactant solutions, Fig. 3b), involving molecules
containing chemical units of at least two different natures
(like block-copolymers). However the primary DN1 tapes
are homogeneous. So, what is the reason why the thickness
of the reams (fibrils) formed in DN1 solution is limited?

The explanation of this paradox is given below. All
peptide molecules (both biological and synthetic like those
used in our experiments) are chiral. Hence, the equilib-
rium structure of the primary β-sheet tapes must be nat-
urally twisted [1,2], Figure 4a, cp. Figures 1d, f. In or-
der to combine together and form a ream, such twisted

tapes must either untwist completely (see Fig. 3a) or they
should inter-twist together, Figure 4b. In the latter case
their axes deviate from the straight lines (Fig. 4c). They
can also partially untwist compared to the initial equilib-
rium structure, Figure 4a. The more tapes are combined
into a ream, the stronger are these distortions of the indi-
vidual tapes. Both ways of the ream formation (complete
untwisting and twisting together) imply some energy cost,
as the structure of tapes in the ream does not coincide with
the single-tape equilibrium structure. We show below that
both situations are in principle possible depending on the
values of molecular parameters. However, for a particular
case of a weak face-to-face attraction it is the latter situa-
tion which costs less energy, hence the tapes combine into
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Fig. 3. (a) The most naive picture: face-to-face attraction
should cause formation of an infinite stack (i.e. a sheet formed
by parallel stacked tapes (ribbons)). (b) An example of a finite
size self-assembling structure: spherical micelles are formed in
solution of surfactants.

a twisted fibril. The width of the stack (the fibril thick-
ness) is thus stabilized at some finite level when the cost
of distortions of all tapes is balanced by the energy gain
due to the face-to-face attraction.

Thus the fibril size is stabilized by the twisted charac-
ter of the tapes. This is a unique situation when a micro-
phase formation (precipitation into finite fibrils which is
similar to micellization) takes place in a homogeneous
material (uniform tapes, rather than surfactants, block-
copolymers or other amphiphilic molecules). The general
theoretical approach is described in the next section. The
experimental results on the DN1 peptides are considered
in Section 3. In Section 4 we estimate the basic micro-
scopic characteristics of the DN1 peptide tapes using both
the theory and the experimental data.

2 Theory for fibrils stabilized by twist

2.1 Model and fibril’s free energy

Let us assume that each tape has a rectangular cross-
section a × b, a < b, that the opposite sides of the tape
are physically the same, and that its equilibrium state is
a straight helix with a step h0 � a, Figure 4. Such special
kind of a tape will be called ribbon, cp.with our general
classification outlined in reference [5]. When two tapes

Fig. 4. Equilibrium structure of a chiral peptide beta-sheet
ribbon: the central axis is straight and the ribbon is twisted
around its axis with the step h0 (a). Four ribbons combined
into a stack (b) and their inter-twisted and bent axes (c). For
the clarity of the illustration the ribbons are shown as infinitely
thin sheets, separated by the distance a in the stack.

(ribbons) stick together by their wider sides they gain the
energy (per unit length)

Eattr = −σb (1)

due to surface attraction, σ is the corresponding attrac-
tion energy per unit area of contact. Simultaneously, each
ribbon deviates from the equilibrium straight twisted state
(Figs. 4b, c), thus increasing the elastic energy. Below we
calculate the elastic energy increment.

For the sake of simplicity we assume that the ribbon
contour length is fixed and that the ribbon conforma-
tion is completely determined by two unit vector fields:
{t(s),n(s)}, where t is the local cotangent vector (along
the ribbon axis) and n is the vector locally normal to the
wider side (side surface) of the ribbon, Figures 1d, 4a.
Here s is the distance along the ribbon axis. In the gen-
eral case the elastic energy (per unit contour length) of
a deformed (bent and/or twisted) ribbon can be written
as Eelast = Eelast

(
dt
ds ,

dn
ds , t,n

)
. The first derivatives of the

vectors t and n characterize the amplitude of the corre-
sponding local bending/twisting in a particular direction.
It is convenient to use the ribbon’s own reference frame
{t(s),n(s),m(s)}, where m(s) ≡ [t× n]; then

dt
ds
≡ (0, ν, tm) ,

dn
ds
≡ (−ν, 0, nm) (2)

(we used here the fact that tn = 0, hence dt
dsn + dn

ds t =
0, and also that t2 = n2 = 1). Here ν corresponds to
bend, tm to splay, and nm to twist. The initial equilibrium
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straight twisted conformation of a ribbon corresponds to
ν = tm = 0 and nm = n

(0)
m = 2π/h0 ≡ γ0 = const.,

where h0 is the twist step (the twist double period), see
Figure 4a. If the deviation from the initial conformation is
weak, the energy Eelast can be written as a series expansion
in deformations. The main (second-order) terms of this
expansion are1

Eelast =
1
2
kbend ν

2 +
1
2
ksplay t

2
m +

1
2
ktwist

(
nm − n(0)

m

)2

+ k̃1νtm + k̃2νnm + k̃3tmnm. (3)

As both sides of the ribbon are equivalent2 the substitu-
tion n(s) → −n(s) (with s → s, t → t, m → −m) must
not change the energy; ν and tm change the sign under
this substitution and nm is invariant, hence k̃2 = k̃3 ≡ 0.
As both ends of the ribbon are also equivalent3, the sub-
stitution s → −s, t → −t, n → n, m → −m conserves
the energy as well; now tm changes the sign and ν and nm
are invariant, hence k̃1 = k̃3 ≡ 04. Thus we have proved
that the elastic energy of a twisted ribbon includes only
three first terms in the expansion 3:

Eelast =
1
2
kbend ν

2 +
1
2
ksplay t

2
m +

1
2
ktwist

(
nm − n(0)

m

)2

(4)

(cp. Ref. [8] where it was assumed that kbend = ksplay) 5.
Note that the elastic energy formula 4 has benefitted from
the natural symmetry of a ribbon, as considered at the
beginning of this section6.

Now we calculate the elastic energy of the ribbons
forming a fibril of p ribbons. In the first approximation
the thickness of each ribbon remains constant (= a), hence
the vector function rj(z) defining the axis of the ribbon
number j (1 ≤ j ≤ p) in a twisted stack-like fibril (in the

1 Essentially the same expansion 3 was used by Marko and
Siggia for description of elastic energy of B-DNA double helix,
see equation (2) in reference [7].

2 This is true for DN1 ribbon which is a double β-sheet tape,
see Section 3 and Figure 5a. However, this is not the case for
B-DNA structure which is not symmetric with respect to a
180◦ rotation around its main axis, cp. reference [7].

3 This symmetry argument works both for DN1 double tape
(ribbon) and for B-DNA.

4 With similar symmetry argument it is possible to show that
the only linear term allowed in equation (3) is const×nm. This
term is included in the free energy, equation (3), in the form

−ktwistn
(0)
m nm.

5 Obviously a splay deformation is very unfavourable for a
ribbon with b� a : ksplay � kbend, so that ribbons must tend
to avoid any splay.

6 The general case of a curly tape symmetry (see classifica-
tion in ref. [5]), which applies to both B-DNA molecules [7]
and single β-sheet tapes like K24 [3,4], implies the follow-

ing expansion: Eelast = 1
2
kbend

�
ν − ν(0)

�2

+ 1
2
ksplayt

2
m +

1
2ktwist

�
nm − n(0)

m

�2

+k̃2νnm (note two extra terms kbendνν
(0)

and k̃2νnm, cp. Ref. [7])

absolute reference frame {x, y, z}, where z is the coordi-
nate along the fibril axis) is

rj = zẑ + ρjn(z); nj = n(z) = (cos (γz) , sin (γz) , 0) ;

ρj ≡ a
(
j − p+ 1

2

)
(5)

where γ = 2π/h is the twist strength (= twist angle per
unit length), nj is the vector normal to side surface of
ribbon j, ẑ is the unit z-coordinate vector, and p is the
aggregation number (number of ribbons per fibril). The
contour length element along the axis of ribbon j is

dsj = Qj dz, Qj ≡
(
1 + γ2ρ2

j

)1/2
.

After simple algebra we get

tj =
(
−γρj
Qj

sin (γz) ,
γρj
Qj

cos (γz) ,
1
Qj

)
;

mj =
(
− 1
Qj

sin (γz) ,
1
Qj

cos (γz) ,−γρj
Qj

)
;

νj = −γ
2ρj
Q2
j

; (tm)j = 0; (nm)j =
γ

Q2
j

· (6)

Thus the elastic energy 4 of ribbon number j is:

E(j)
elast =

1
2
kbend

γ4ρ2
j(

1 + γ2ρ2
j

)2 +
1
2
ktwist

(
γ

1 + γ2ρ2
j

− γ0

)2

(7)

and the average elastic energy per ribbon in a fibril is

Ēelast =
1
p

p∑
j=1

E(j)
elast. (8)

Combining equations (1, 7, 8) we get the average energy
of a ribbon in the fibril formed by p ribbons:

E = Ēelast +
p− 1
p
Eattr

=
1
2
kbend

γ4a2

p

p∑
j=1

(j − (p+ 1)/2)2(
1 + γ2a2 (j − (p+ 1)/2)2

)2

+
1
2
ktwist

γ2

p

p∑
j=1

(
1

1 + γ2a2 (j − (p+ 1)/2)2 −
γ0

γ

)2

− p− 1
p

σb. (9)

The equilibrium structure of the fibril can be obtained by
minimization of the energy (9) with respect to the twisting
strength γ and the aggregation number p. The fibrils are
stable if the resulting net E is negative.
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Fig. 5. Local arrangements of DN1 peptide molecules inside a
ribbon (double tape) (a), inside a fibril composed of p = 4 dou-
ble tapes (b) and inside a fibre composed of two fibrils (c). The
twist is not apparent for these short fragments. The essential
interactions responsible for self-assembling are indicated. Geo-
metrical sizes for DN1 are: a ' 20−25 Å, b ' 37 Å, c ' 4.7 Å
(see Eq. (32)).

2.2 ‘Many-folded’ fibrils

Usually the aggregation number is rather large: p � 1.
For this limit the sums in equation (9) can be approxi-
mated by the corresponding integrals which are evaluated
analytically. The energy (9) can thus be rewritten as

E ' ktwistγ
2
0

{
β

4β2
0

[
k̃ (C(β) −D(β)) + (C(β) +D(β))

]
−C(β)

β0
+

σ̃

2β0

}
+ ktwistγ

2
0

(
1
2
− σ̃

γ0a

)
(10)

with the following new parameters introduced

β0 ≡
γ0ap

2
≡ πap

h0
, β ≡ γap

2
≡ πap

h
,

k̃ ≡ kbend

ktwist
, σ̃ ≡ σab

γ0ktwist
, (11)

Fig. 6. The scaling diagram of regimes for solution of
twisted ribbons forming fibrils in variables k̃ = kbend/ktwist,
σ̃ = σab/(γ0ktwist). The twist of the fibrils is prac-
tically identical to the twist of primary ribbons, γ '
γ0, in regime 1, equations (A.10, A.11) and in regime 2,
equations (A.16, A.17). The fibrils are ‘thin’ and strongly un-
twisted, γ � γ0, in regime 3, equations (A.21, A.22). In
regime 4 (Eqs. (B.3, B.4)) wide stacks (sheets) are formed,
and in regime 5 the width of the stacks tends to infinity.

C(β) ≡ arctan(β), D(β) ≡ β

1 + β2
· (12)

The minimization of the free energy E with respect to
γ and p is now equivalent to the minimization with re-
spect to β and β0. Note that k̃ and σ̃ are molecular con-
stants, the last term in equation (10) is constant as well,
hence we should focus on the term in curly brackets in
equation (10). The values β and β0 corresponding to the
minimum are completely determined by the values of the
parameters k̃ and σ̃ via the following equations:

β0 = β
(1 + k̃)C(β) + (1− k̃)D(β)

2C(β)− σ̃ (13)

β0 =

[
(1 + k̃)C(β) + (1− k̃)D(β)

]
4C′(β)

+
β
[
(1 + k̃)C′(β) + (1− k̃)D′(β)

]
4C′(β)

(14)

where C′ and D′ are the derivatives of the corresponding
functions:

C′(β) ≡ 1
1 + β2

; D′(β) ≡ 1− β2

(1 + β2)2 · (15)

In order to find the equilibrium fibril structure (for p� 1)
one has to minimize the energy (10) (i.e. to solve the sys-
tem of Eqs. (13, 14)). Below we first consider the relevant
asymptotic regimes and then the general case. The corre-
sponding scaling regimes are shown in Figure 6.

2.3 Asymptotic regimes

Equations (10, 13, 14) allow for analytical analysis of the
limiting cases when the effective fibril width is small,
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β � 1 (Appendix A), or when it is large, β � 1
(Appendix B).

The results for these two limiting cases are listed be-
low. In all the cases the molecular parameters of the pri-
mary ribbons (their width a, twist γ0, the ratio of the
elastic constants k̃ and the effective attraction energy σ̃)
are considered as known parameters, and we calculate the
aggregation number p and the twist γ of the equilibrium
fibril. We distinguish between three different regimes for
β � 1 and two different regimes for β � 1 (five asymp-
totic regimes all together).

In the case of ‘thin’ fibrils (β � 1), the free energy per
ribbon (10) can be approximated as truncated series of β
and minimized as explained in Appendix A. Depending on
which of the terms in the series (A.2) are most important,
we distinguished between three regimes of different scaling
behaviors, see regimes 1, 2 and 3 in Figure 6. The results
for the parameters of the equilibrium fibril (p, γ) are:

paγ0 '
(

12σ̃
k̃

)1/3

;
γ0 − γ
γ0

'
(

12σ̃
k̃

)2/3
k̃ − 1/2

6
in regime 1, (16)

paγ0 ' (90σ̃)1/5 ;
γ0 − γ
γ0

' −
(

25σ̃2

768

)1/5

in regime 2, (17)

apγ0 '
4k̃σ̃3

3
; γ ' γ0

3
2k̃σ̃2

in regime 3, (18)

see equations (A.10, A.11, A.16, A.17, A.21, A.22) in
Appendix A. The boundaries between the regimes are also
defined in Appendix A (see also Fig. 6). Note that all
three regimes of ‘thin’ fibrils correspond to low enough
effective inter-ribbon attraction energies: σ̃ < σ̃c, where
the upper boundary σ̃c (coming from the combined condi-
tions (A.14, A.18, A.23)) depends on k̃ and is of the order
unity.

In both regimes 1 and 2 the equilibrium fibril twist
strength is very close to the primary single-ribbon twist,
γ ' γ0. In regime 1 it is the bending energy which sta-
bilizes the growth of the fibril width, whereas in regime 2
it is the twisting energy that determines the fibril diame-
ter (see the corresponding terms in Eq. (7); both contri-
butions increase with the number p of ribbons per fibril
and compete with the attraction energy gain per ribbon
Eattr/p, thus determining the optimal p). Hence, the fib-
ril width p does not depend on ktwist in the asymptotic
regime 1 (Eqs. (16)), and kbend does not enter at all the
results for the asymptotic regime 2, equations (17).

In contrast, in regime 3 the equilibrium fibrils are
considerably untwisted compared to the primary ribbons:
γ � γ0. The fibrils are composed of many ribbons (p� 1,
see Eq. (A.25)), but the fibril width is still small if com-
pared with the helix step: β � 1. This situation realizes
only when the bending modulus exceeds the twisting one

(k̃ & 1, see Fig. 6). The typical bending energy incre-
ment (∂Ebend/∂γ ∼ kbendγ

3(ap)2) and the increment of
the twisting energy (∂Etwist/∂γ ∼ ktwistγ0) for the rib-
bons in the equilibrium fibril are now of the same order
(see Eqs. (7, A.21, A.22)), and the total elastic energy
gain Eelast ∼ kbendγ

4(ap)2 (Eq. (7)) is now competing
with (and equals to) the effective ‘surface tension’ term
Eattr ∼ σb/p (Eq. (9)), see equations (A.21, A.22).

For the case of wide sheet-like fibrils (β � 1) the
asymptotic formulae (B.2) can be used and the consid-
eration of Appendix B is appropriate. We distinguished
between the case of wide but still finite and twisted sheet-
like fibrils (regime 4) and the case of infinite, completely
untwisted sheets (regime 5). The case of ‘thick fibrils’ or
‘wide stacks’ is characterized by the following asymptotes
(Eqs. (B.4)):

apγ0 '
2π
(

1 + k̃
)

(π − σ̃)2 ; γ ' γ0
2 (π − σ̃)

π
(

1 + k̃
) in regime 4.

(19)

The above equations are valid if 0 < π − σ̃ � 1, see
Figure 6. In this case the ‘stack’ is strongly untwisted com-
pared to the primary ribbons, γ � γ0.

For even higher effective attraction energy, σ̃ ≥ π, the
ribbons tend to form infinite sheets (with null twist), i.e.

p→∞; γ → 0; apγ →∞ in regime 5 (20)

(see Appendix B, Eqs. (B.7)).
The aggregates (fibrils) are stable if the net energy

gain (when the ribbon enters a fibril) is negative, i.e. if
E < 0, and if p ≥ 2. These two conditions are satisfied for

σ̃ > σ̃∗, (21)

where

σ̃∗ '
2
3
k̃ (γ0a)3 in regime 1 (22)

σ̃∗ '
16
45

(γ0a)5 in regime 2 (23)

σ̃∗ '
1
2
γ0a in regime 3 (24)

σ̃∗ '
1
2
γ0a−

(π − σ̃)
2p

in regime 4 (25)

σ̃∗ =
1
2
γ0a in regime 5 (26)

see equations (A.15, A.20, A.25, B.6, B.9). That means
that the fibrils are stable only in a part of the diagram in
Figure 6, namely above some boundary σ̃ > σ̃∗ where σ̃∗
depends on k̃ and (γ0a). The threshold σ̃∗ is not shown in
Figure 6 due to the extra argument (γ0a) involved, which
cannot be reduced to just k̃ and σ̃.
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Fig. 7. The results of the numerical analysis of equations (13, 14) defining the equilibrium fibril structure. The plot shows
the dependence of the normalized width of the fibrils, β0 ≡ paγ0/2, on the normalized attraction energy σ̃/π. The ratio
k̃ ≡ kbend/ktwist is fixed along each line, the ratio σ̃ = σab/(γ0ktwist) varies from 0 to π (i.e. to the threshold of the regime 5
(infinite stacks)); k̃ = 0.001 (a), 0.01 (b), 0.1 (c), 1 (d) and 100 (e). The line marked by crosses is plotted in accordance with
equation (A.16), the asymptotic result in regime 2 (k̃� 1). The asymptotic results in the regimes 1 (the left inset, Eq. (A.10)),
3 (the middle inset, Eq. (A.22)) and 4 (the right inset, Eq. (B.3)) are also shown for k̃ = 0.01 (crosses), 0.1 (diamonds), 1 (boxes)
and 100 (pluses).

2.4 The general case

The system of equations (13, 14) was solved numerically
in the cross-over regions separating the regimes considered
in Section 2.3 above, and in particular for σ̃ ' 1 (cross-
over between the regimes 2, 3 and 4). Let us consider the
effect of the attraction energy σ on the fibril formation
(k̃ = const. and σ̃ is changing, see Eq. (11)). The results
of the corresponding calculation are shown in Figures 7, 8
(it is still assumed that p� 1).

Figure 7 illustrates the reduced width of the fibrils,
β0 ≡ paγ0/2, as a function of the reduced attraction en-
ergy σ̃ ≡ σab/(γ0ktwist), and Figure 8 shows how the nor-
malized equilibrium twist γ/γ0 ≡ β/β0 changes with σ̃. It
is clear that the reduced width, β0, is monotonously in-
creasing with σ̃ for any k̃ (cp. Eqs. (16–19)). One can easily
see that the fibril width tends to infinity as σ̃ → π−0, and
simultaneously the twist tends to zero (this is true for any
k̃). For σ̃ ≥ π the minimization of the free energy results
in p = ∞, γ ≡ 0. For small enough σ̃ the fibril twist γ is
very close to the initial twist γ0 in an individual ribbon:
γ/γ0 ' 1. For small k̃ the twist γ first slightly increases
and then decreases when σ̃ is increased (cp. Eqs. (16, 17));
γ always decreases with σ̃ for k̃ & 1/2.

Let us consider how the fibril structure depends on
kbend when all other parameters (ktwist, σ, γ0, a, b) are
kept fixed, i.e. the dependence of the fibril structure on k̃
for fixed σ̃. The twist γ always decreases with increase of
k̃ for any σ̃, see Figure 8. For small σ̃ (when thin enough
fibrils are formed), an increase of k̃ (i.e. an increase of the
bending modulus) at the beginning causes a decrease and
then (for extremely high values of k̃ & 1.5/σ̃2, Eq. (A.24))
an increase of the fibril width, see Figure 7. However, for
larger σ̃ (namely, when σ̃ is close to the threshold π) an
increase in kbend always cause an increase of the width of
fibrils and a decrease of twist (cp. Eqs. (19) for regime 4).
In fact, a high bending modulus kbend suppresses bend
deformations, hence the ribbons have to untwist consider-
ably in order to form a fibril.

One can easily check that numerical solutions of equa-
tions (13, 14) are in agreement with the asymptotic results
discussed in Section 2.3. Indeed, in the limit of small σ̃ the
asymptotes of the regime 1 are always approached, see the
left inset in Figure 7 and the line γ/γ0 = 1 (crosses) in
Figure 8. For small k̃ and intermediate values of σ̃ it is
equations (17) (regime 2) that are appropriate (see lines
of crosses in Figs. 7, 8). For large enough k̃ and interme-
diate values of σ̃ the asymptotes of regime 3 are realized
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Fig. 8. The results of the numerical analysis of equations (13, 14) for the equilibrium fibril structure. The plot shows the
dependence of the relative twist in equilibrium fibrils γ/γ0 ≡ β/β0 as a function of σ̃/π. The line marked by crosses corresponds
to γ/γ0 = 1 (the asymptotic result in regimes 1 and 2, Eqs. (A.11, A.17)), other lines show the asymptotic dependencies in
regime 3, equation (A.21), for k̃ = 1 (boxes) and 100 (pluses). The inset lines correspond to the asymptotic results in regime 4,
equations (B.4). Other notations as in Figure 7.

(cp. the numerical results for k̃ = 100 and the line of
pluses in the middle inset of Fig. 7 and in the main part
of Fig. 8). Finally, for σ̃ close to the threshold value π, the
asymptotes of regime 4 are appropriate (the right inset of
Fig. 7 and the inset of Fig. 8).

The question of fibril stability deserves an extra anal-
ysis. As was already mentioned above, the fibril is stable
if the net fibril energy E (per ribbon) is negative. Using
equation (10) this condition can be rewritten as

H > H1 ≡
β

4σ̃β2
0

[
k̃ (C(β) −D(β)) + (C(β) +D(β))

]
− C(β)

σ̃β0
+

1
2β0

+
1

2σ̃
(27)

where the left hand side represents the reduced twist step
of the primary ribbon:

H ≡ 1
aγ0
≡ h0

2πa
· (28)

The values β and β0 are defined in equations (13, 14). The
right hand side of condition 27, H1, depends on the re-
duced molecular parameters k̃ and σ̃. Note that the larger
is the primary twist step h0, the weaker is the condition 27.

It is also important to check that p ≥ 2, as the
fibril must consist of at least two ribbons (a stronger
condition, p � 1, was assumed above). Hence p/2 ≡

β0/(aγ0) ≥ 1, i.e.

H ≥ H2 ≡
1
β0

(29)

where β0 is determined by equations (13, 14) (i.e. H2 is a
function of parameters k̃ and σ̃, like H1). The right hand
side of condition (29) is always a decreasing function of σ̃,
see Figure 7.

The fibril is stable if H > max(H1,H2), or if the free
energy of the minimal fibril is negative, E(p = 2) < 0. The
latter energy can be estimated using equation (10):

E(p = 2)
γ2

0ktwist
= min
x≡aγ

{
x

4 (γ0a)2

[
k̃ (C(x) −D(x))

+ (C(x) +D(x))]− C(x)
γ0a

− σ̃

2γ0a
+

1
2

}
·

(30)

The condition E(p = 2) < 0 can be rewritten as H > H3,
where H3 depends on σ̃, k̃.

Thus we arrive at the following general condition of
fibril stability: H > H∗, where

H∗ = min (max (H1,H2) ,H3) . (31)

The effect of molecular parameters k̃ and σ̃ on the thresh-
old H∗ is illustrated in Figure 9.
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Fig. 9. The fibrils’ stability threshold H∗ (see Eq. (31)) as a function of the molecular parameter σ̃/π for different values of k̃
as in Figures 7, 8: k̃ = 0.001 (a), 0.01 (b), 0.1 (c), 1 (d) and 100 (e). The fibrils are stable if the reduced twist step of primary
ribbons, H, is larger than H∗. The left parts of the curves are determined by the condition H > H3, and the right parts – by
the condition H > H1 (the points where these conditions are equivalent are marked by crosses on each curve). It turns out that
H2 is always either lower than H1, or it is higher than H3, hence H∗ is never determined by H2. For σ̃ ≥ π all curves merge to
H∗ = 1/(2σ̃) (see condition (B.9)).

One can easily see that H∗ is a decreasing func-
tion of σ̃ for any k̃. Hence the fibrils are stable if σ̃ >
σ̃∗(k̃, H), where the critical value σ̃∗ is implicitly defined in
equation (31).

For h0 > a the fibrils are unstable if σ̃ < σ̃∗(k̃, H) (see
Fig. 9). In the range σ̃∗(k̃, H) < σ̃ < π the equilibrium
fibrils are finite: 2 ≤ p < ∞. Infinite sheets are formed
instead of finite fibrils if σ̃ > π.

On the other hand, finite fibrils are never stable if the
primary twist strength is extremely (unrealistically) high:
h0 < a (i.e. 1/H > 2π); in this case single ribbons are sta-
ble if σ̃ < 0.5/H, and infinite ‘stacks’ (sheets) are formed
for higher inter-ribbon sticking energies, σ̃ > 0.5/H.

One can clearly see that the smaller is the bending
modulus (the smaller is k̃) and/or the weaker is the pri-
mary ribbon twist (the larger is h0), the wider is the region
of stability of the finite fibrils, see Figure 9.

3 Experimental

Standard automated solid phase method was employed
for the synthesis of the 11-residue de novo DN1 peptide.
The peptide was purified by reverse phase HPLC in water-
acetonitrile gradient in the presence of 0.1% TFA (triflu-
oroacetic acid). Mass spectrometry confirmed the purity
of the final product: the molecular mass is as expected
µ = 1593 [3]. The solutions under consideration are the
DN1 peptide solution in a double distilled water.

The primary structure of DN1 peptide is: CH3CO-
Gln-Gln-Arg-Phe-Gln-Trp-Gln-Phe-Glu-Gln-Gln-NH2. It
was rationally designed to self-assemble into polymeric

hydrogen-bonded β-sheet tapes in water. The (-CH2)2

moieties of the six glutamine residues are expected to pro-
vide attractive intermolecular hydrophobic interactions
between side-chains. The residues Phe4, Trp6 and Phe8,
which are also hydrophobic, are expected to provide addi-
tional intermolecular recognition due to π−π interactions.
Arg3 and Glu9 provide an additional degree of recognition
via their strong Coulombic attraction (Arg being posi-
tive and Glu being negative for 4.1 < pH < 12.5), and
favour an antiparallel alignment of the strands. Chemi-
cally blocked peptide termini as well as doubled Gln’s are
used at the beginning and at the end of the peptide chain
to reduce edge-to-edge Coulombic attraction between the
tapes. Gln, Arg and Glu side-chains make one surface of
the β-sheet tape more hydrophilic than the other; the lat-
ter is consisting of the side-chains Gln, Phe and Trp and
is quite hydrophobic. Hence single β-sheet tapes combine
into pairs (double tapes, i.e. ribbons). As a result, the
DN1 peptide in water indeed forms double β-sheet tape-
like structures (what is called primary ribbons or simply
ribbons in other parts of this paper), see Figures 2a, 5a.

At higher concentrations the DN1 double tapes (rib-
bons) combine into stacks (fibrils) due to chemical affin-
ity and geometric complementarity, Figures 2b, 5b. In-
deed, the −CONH2 moieties, in particular these at the
end of the Glu side chains on the polar side of the single
β-sheet which pave the outer sides of the double tapes, can
establish an extensive hydrogen bond network between
sides of the double tapes.

These fibrils then show a tendency to wind around each
other to form rope-like fibres, Figure 2d. However, even
the solutions which are half a year old, are apparently
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not aged enough: formation of the rope-like fibres has
not been accomplished for all fibrils. We believe that the
driving force towards these rope-like structures is the at-
traction between the edges of the β-sheets forming the
two opposite sides of the surface of the fibril as shown in
Figure 5c.

Molecular modeling of the DN1 peptides inside the β-
sheet structure yields the length of the peptide rod b '
37 Å, its width along the β-sheet c ' 4.7 Å, and its width
across the β-sheet a1 ' 10 ÷ 12.5 Å (hence the width of
the double tape is a = 2a1 ' 20 ÷ 25 Å). That means
that the concentration 1 mM ' 1.6 mg/ml corresponds to
the volume fraction of about 0.12 ± 0.01% v/v (peptide
density about 1.3 g/cm3).

We possess an extensive experimental evidence show-
ing that the self-assembling aggregates formed by the DN1
peptide in water are arranged locally similar to how it
is cartooned in Figure 5. The basic structure formed by
DN1 in water is an intermolecular β-sheet tape with an-
tiparallel alignment of straight β-strands (without hair-
pins), Figure 1c. It is formed at high enough concentra-
tions (c > 75 µM), and this β-sheet structure is an element
of all higher order aggregates (double tapes, fibrils/fibres).
This fact is proved by the analysis of infra-red and far-UV
circular dichroism spectra as explained in references [3,4].
X-ray diffraction data reveal 4.7 Å periodicity in all struc-
tures and are consistent with the expected inter-strand
distance in a β-sheet. The X-ray data are also consistent
with the peptide β-strands being approximately perpen-
dicular to the axis of fibrils [3].

The presence of two morphologically different kinds of
self-assembling structures (ribbons and fibrils) is apparent
from the transmission electron microscopy (TEM) images,
Figures 2a, b, c (similar images were received from scan-
ning electron microscopy and atomic force microscopy),
it is also revealed in far- and near-UV CD spectroscopy.
Indeed, the far-UV CD spectrum of the peptide tapes has
a positive band at ca. 195 nm and a negative band at
ca. 214 nm, features typical of β-sheet conformation. In
contrast, the CD spectrum of fibrils has a shifted negative
band, centered at 224 nm rather than at 214 nm. This
shift is likely to arise from the superposition of a strong
aromatic CD band on the classical CD spectrum which is
associated with a change of stacking (to a more dense pat-
tern) of the aromatic side-chains of the peptide molecules
when they enter the fibrils, cp. references [9–11].

For TEMs Figure 2 the DN1 peptide solutions were
incubated at a desired concentration for a long time to
allow them to achieve equilibrium self-assembling struc-
tures. In all of the cases the starting peptide solutions were
diluted to concentrations below 40 µM before imaging in
order to prevent complete coverage of the grids by the
peptide. The peptide solutions were immediately applied
on freshly glow discharged, carbon-coated copper grids.
The polymers were allowed to adsorb for 1 minute, fol-
lowed by rinsing of the grids with distilled water, and
air drying. The platinum rotary shadowing was carried
out in a Balzer’s apparatus, and the grids were exam-
ined using a Phillips CM100 electron microscope. Similar

procedures were used for the preparation of the uranyl
negative stained samples.

At very low concentrations DN1 peptide forms flexi-
ble chains (ribbons) less than 5 nm wide, with apparent
length of the order of a micrometer, Figure 2a. The rib-
bons are observed when the starting solution for TEM was
incubated at c = 80÷ 600 µM of DN1. Atomic force mi-
croscopy supports our model of two stacked β-sheet tapes
as the structure of the ribbons (Fig. 5a): the apparent
cross-section width of the ribbons is measured to variate
between 20 and 40 Å (data not shown).

At higher concentrations (c > 600 µM) DN1 forms fib-
rils and fibres. The fibrils look like rigid rod-like polymers,
ca. 8–10 nm wide, with apparent persistence length of
the order of several dozens of micrometers, see Figure 2b.
Their apparent contour length is of the order of microm-
eters, however we believe that this is the result of fibrils
being broken down during preparation for TEM imaging,
so that their actual length in solution may be significantly
longer. If the diluted to c ' 200 µM solution of pep-
tide fibrils is left at room temperature, over a course of
several weeks, the fibrils are seen to unwind into several
ribbons (double tapes). The width of the fibrils and the
mass per unit length measurements support that the fibrils
are made typically of stacks of approximately eight tapes
(data not shown, in collaboration with Dr D. Holmes,
Univ. Manchester).

It should be stressed that fibril/fibre dispersions of
DN1 peptide are stable. Apart from sedimentation due
to the density difference, no tendency to segregation from
water was observed. Even having been aged for some two
years, the DN1 solutions can restore their water-like ho-
mogeneity after a mild shaking with a hand.

4 Estimation of the molecular parameters
for water solutions of DN1 peptide ribbons

In this section we estimate a number of molecular param-
eters of the DN1 ribbons and the fibrils formed by the
ribbons using the theory presented in Section 2. We as-
sume that the primary ribbons (structural units of the
fibrils) are the double tapes for the DN1 in water: as
explained in Section 3, one side of a single DN1 tape
is strongly hydrophobic, hence favouring a formation of
paired (doubled) tapes; single tape fragments must be un-
favourable. This assumption is supported by the UV CD
spectra analysis and the TEM photographs, as explained
in references [5,6].

Molecular dimensions of one peptide molecule in a rod-
like (extended β-strand) conformation (inside β-sheet) are
(see Sect. 3):

a1 ' 11.5 Å; b ' 37 Å; c ' 4.7 Å, (32)

hence the double tape (the ribbon) has a cross-section
a× b with a ' 2a1 ' 23 Å. c is the distance between the
peptide molecules (‘rods’) in a tape along its main axis,
see Figures 1d, 4, 5a.
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Let us consider the bend and twist energies starting
with single β-sheet tapes. Neighbouring peptide molecules
in each DN1 β-sheet are connected into tape by 11
hydrogen bonds and other attractions as explained in
Section 3. We characterize these bonds/attractions with
effective springs between the neighbouring rods assuming
that the effective bonds are homogeneously distributed
along the rods. A tape deformation causes additional sepa-
ration δR between the monomers connected by the bonds,
so the energy of all bonds between a pair of rods neigh-
bouring in the tape is

δE =
κ
2

∫
(δR(x, y))2 dxdy (33)

where κ is the elastic constant, x is the coordinate of a rel-
evant chemical unit along the rod axis, −b/2 < x < b/2, y
is the coordinate across the tape (−a1/2 < y < a1/2) and
δR(x, y) is the variation of the radius-vector connecting
units involved in the chemical bond at the point (x, y)7.
If a single β-sheet is twisted with a twisting strength γ
(this corresponds to a twisting angle θ = γc per rod,
cp. Eqs (5, 6), and δR(x, y) ' θx) the energy per rod
is δE = κ(γc)2b3a1/24. If a single β-sheet is bent with
curvature ν (the bending angle is hence θ̃ = cν per each
rod step, see Eq. (2)), the separation is δR = θ̃y. Hence
the energy per rod is δE = κ(νc)2a3

1b/24.
Two tapes are stuck into a ribbon (double tape) by

hydrophobic attraction between the side groups of pep-
tides (lining one of the sides of each single tape). We first
assume that this attraction is homogeneous and is not re-
lated to the positions of particular rods inside the tapes,
i.e. that single tapes freely slide along each other to adjust
their length when the double tape is bent8. Hence the en-
ergy increment for a double tape δEd = 2 δE. Comparing
the energy increments, δEd, for twisted and bent tapes
(see above) with the definitions given in equation (4) we
get the following equations for bending and twisting con-
stants of double tapes:

kbend = κa3
1bc/6 (34)

ktwist = κa1b
3c/6. (35)

The ratio of the moduli is

k̃ ≡ kbend

ktwist
=
(a1

b

)2

' 0.1. (36)

From the electron micrographs of fibrils we see that h '
1600 ± 400 Å, see Figures 2c, d, i.e. γ = 2π/h ' (4 ±
1)× 10−3 Å

−1
. The fibril diameter (ap) is approximately

90 ± 10 Å corresponding to p ∼ 4 of double tapes in a
7 Isotropic model is assumed here for simplicity: the elastic

energy increment is assumed to be independent of the direction
of δR vector.

8 The opposite assumption is that the two tapes are struc-
turally linked by the side-chains into the ribbon, the difference
is explained in the end of this section, see equations (43, 45).

fibril (see Eq. (32)), and the twist parameter β ≡ γap/2 '
0.18± 0.05 (see Eq. (11)) is rather small, so the equations
for regimes 1 or 2 are applicable in the first approximation
(see Sect. 2.3). Regime 3 is excluded since k̃ < 1 (see
Eq. (36) and Fig. 6). Hence γ ' γ0 (see Eqs. (16, 17)), i.e.

γ0 ' (4± 1)× 10−3 Å
−1
. (37)

Note that the typical twisting angle per rod in DN1 pri-
mary double tape, θ ' cγ0 ' 0.02 ∼ 1◦, is small if com-
pared with the typical twist angles in most native primary
β-sheets (about 10÷ 30◦, Refs. [1,2]). The fact that this
twist is so weak promotes the effective fibrillization of the
DN1 ribbons (see Fig. 9 and the discussion at the end of
Sect. 2.4).

Using the obtained values β0 ≡ γ0ap/2 ' β ' 0.18
and k̃ ' 0.1, we can verify that the system falls into the
first regime: solving the first equation (16) for σ̃ we get
the reduced sticking energy

σ̃ ≡ σab

γ0ktwist
' 4× 10−4 (38)

which is consistent with the condition (A.14) specifying
regime 1.

The persistence length l̃(2d) of DN1 ribbons (double
tapes) in two dimensions (on the surface) can be estimated
using the electron micrographs (Fig. 2a) obtained at very
low concentrations where the fibrils are split into separate
double tapes: l̃(2d) ' (0.8 ÷ 3.5) × 104 Å ∼ 2 × 104 Å.
On the other hand, the apparent persistence length of a
twisted tape confined to a surface can be related to its
elastic moduli; assuming that ksplay � kbend we get

l̃(2d) =
4kbend

kBT
(39)

(it is twice its persistence length in three dimensions
l̃(3d) = 2kbend/kBT , and the latter one is again twice the
persistence length lpers of an ordinary semiflexible polymer
with kbend ' ksplay = k in 3d-space: lpers = k/kBT [12]).
Hence we obtain the following estimate for the bending
modulus

kbend

kBT
∼ 0.5 µm. (40)

Using equation (36) we also get the twisting modulus:

ktwist

kBT
∼ 5 µm, (41)

and, finally, the energy of the inter-ribbon attraction (see
Eqs. (32, 37, 38)):

σ

kBT
∼ 10−4 Å

−2
(42)

i.e. the sticking energy per rod is σbc ∼ 0.015 kBT and
the sticking energy per persistence length l̃(3d) is high:
σbl̃(3d) ∼ 30 kBT .
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Above we have adopted an extreme assumption of ho-
mogeneous attraction between the tapes in the ribbon
(hence, δEd = 2 δE). The opposite extreme assumption
is that the two tapes are structurally linked by the side-
chains into a crystal-like ribbon. In this latter case, we
can apply the same model of homogeneously distributed
isotropic bonds (between consequent c-segments) to the
ribbon as a whole, as used above for single tapes. Hence,

kbend = κa3bc/12, ktwist = κab3c/12, (43)

i.e. kbend is now four times higher than it was before, and
hence now k̃ = (a/b)2 ' 0.4 (cp. Eqs. (34, 35, 36)). Note
that as before: k̃ < 1, hence equation (37) for γ0 still holds.
Equation (40) for the value of the bending modulus kbend

holds as well, being directly related to the experimental
value of persistent length of the ribbons l̃(2d). Therefore,
the new values for ktwist and σ̃ (cp. Eqs. (38, 41)) are:

ktwist

kBT
' 1.25 µm, σ̃ ' 1.6× 10−3 (44)

(see Eqs. (11, 16, A.14), in particular condition (A.14)
verifies that the system still falls well into the first regime).
Finally, applying equations (32, 37, 45) we get the same
equation (42) for the sticking inter-ribbon energy σ.

Combining the results for both extreme assumptions
considered above, we thus conclude that the DN1 peptide
ribbons are characterized by the following parameters:

γ0 ≡
2π
h0
' 4× 10−3 Å

−1
; σbc ' 0.015kBT ;

kbend

kBT
' 0.5 µm;

ktwist

kBT
' 1.25÷ 5 µm. (45)

5 Discussion and conclusions

A theory for equilibrium fibrils being formed in solutions
of self-assembling peptides is proposed. The primary self-
assembling structure in these solutions is a β-sheet tape
which is twisted due to L-chirality of the peptides forming
the β-sheet (Figs. 1c, d, 4a). These primary tapes (rib-
bons) combine into fibrils, the latter being stacks of tapes
stuck together due to face-to-face attraction between their
longer sides, Figures 1f, 4b. For untwisted tapes (ribbons)
infinitely wide stacks formation is anticipated, Figure 3a.
However, for the twisted tapes the growth of fibril width
is restricted by the penalty arising from elastic distortions
of the tapes when they enter a fibril. The width of the
fibrils is thus stabilized by their intrinsic twist.

Our theory allows to describe the fibril structure in
terms of geometrical parameters of primary ribbons (their
cross-section a× b and their intrinsic twist strength γ0 ≡
2π/h0, where h0 is the twist period), their elastic constants
(kbend and ktwist), and the energy of inter-ribbon face-to-
face attraction (σ), see equations (13, 14, 16–19).

Fibrils are formed if the attraction energy is higher
than some threshold, σ̃ > σ̃∗ (here σ̃ ≡ σab/γ0ktwist),
which is vanishing in the limit of low twist: σ̃∗ → 0 as

h0/a ≡ 2πH → ∞ (Fig. 9 and Eq. (31)). The region of
stable fibrils is wide when the primary ribbons are not
strongly twisted and the ratio k̃ ≡ kbend/ktwist is small.

If the attraction energy is very high (σ̃ > π), infi-
nite sheets of stacked ribbons are formed instead of fib-
rils, as shown in Figure 3a. In this structure, the ribbons
are completely untwisted, the bend energy of the ribbons
is null, and the twist energy penalty is compensated by
inter-ribbon face-to-face attraction.

The calculated dependencies of the fibril parameters
on the molecular constants of primary ribbons are shown
in Figures 7, 8, 9. The scaling diagram of possible fibril
structures is shown in Figure 6.

For a particular case of DN1 synthetic peptide, the
primary ribbon is a double β-sheet tape (see Fig. 5a and
Sect. 3). Such double tapes dominate in DN1 water so-
lution for intermediate concentration range (100 µM <
c < 600 µM), Figure 2a. For higher concentrations, fibrils
(Fig. 5b) are formed, they are imaged in Figure 2b. Our
theory allowed to estimate the molecular parameters of the
primary (double β-sheet) DN1 ribbons from the observed
geometrical characteristics of the ribbons and fibrils (see
Sect. 4, Eqs. (45)).

In some cases a further self-organization takes place:
the DN1 fibrils are seen to wrap around each other to
form rope-like fibres, see Figure 5c and reference [5]. The
driving force for rope formation is the edge-to-edge at-
traction between β-sheets forming the fibrils. Similarly to
fibril stabilisation, the size of the rope (the number of the
fibrils per rope) is restricted by the elastic penalty due to
distortions of the fibrils upon coiling around each other.

The phenomenon of fibril/fibre formation provides a
unique example of micellization which is controlled by
twist instead of being controlled by amphiphilic nature
of aggregating molecules. Like a micellization emerging
at the critical micelle concentration, the fibril formation
takes place at some particular concentration, where the
primary ribbon population saturates. Fibril diameter is
determined by a balance between ribbon attraction and
elastic distortion penalty, thus it is nearly independent of
peptide concentration.

The driving force for ribbon stacking into fibrils, which
was considered so far, is a specific attraction between the
wider sides of the primary ribbons (e.g. for the case of
DN1 it was an extensive hydrogen bond network between
the ends of the Glu side chains, see Sect. 3). For this at-
traction to be effective enough (to stabilize fibrils from
splitting into separate ribbons), a direct contact between
faces of the neighboring tapes is needed. This requirement
ensures that tapes in the fibril are intertwisted, as shown
in Figure 4b.

The fibrils are bulky stiff objects, Figure 2b. Yet, DN1
fibril dispersions proved to be stable (see Sect. 3). This
may sound surprising in view of the fact that usually
van der Waals interactions (and other, e.g. hydropho-
bic, hydrogen binding, etc. attractive interactions) re-
sult in precipitation of stiff rod-like objects (nematic
mesogens, viruses, surfactant cylindrical micelles, etc.).
There is, however, a crucial difference between a solution
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Fig. 10. Cylinders vs. screw-like fibrils: 3d views and some
cross-sections. Parallel cylinders (a) can be put in contact along
all of their length, whereas fibrils (b) always touch each other
only occasionally (cross-sections 1 and 3 ). The effective in-
teraction areas (related to some short-range interactions, like
e.g. van der Waals one, cp. Ref. [13]) are shadowed in the
cross-sections. Geometrical parameters (in Å) of the bodies
as illustrated in this picture: the fibrils (b) have cross-section
(D1 = 40) × (D2 = 100) and twist period h = 1600 (similar
to the DN1 fibrils), the cylinders (diameter D0 ' 71.4) (a)
have the same cross-section area (πD2

0/4 = D1D2). The inter-
axis distances D∆ are chosen to ensure the most close packing:
D∆ = D0 (a) and D∆ = (D1 + D2)/

√
2 ' 100 (b); the upper

fibril in (b) is shifted by h/4 along its axis with respect to the
lower one to ensure minimal inter-axis distance.

of cylinders and a solutions of fibrils of similar width
and rigidity. The difference comes from the local geom-
etry of the fibrils when they approach each other. Indeed,
the effective “interaction area” [13] between two cylin-
ders is typically much larger than that for fibrils, as il-
lustrated in Figure 10. This results in a much weaker at-
traction between fibrils compared to that for cylinders.
This difference in attraction energies can be evaluated
for e.g. a classical nonretarded van der Waals pair po-
tential (∝ r−6): the interaction energy for cylinders scales
as W attr

cyl ∼ ALD
1/2

d3/2 [13] (a) and W attr
fib ∼ A L

D ln
(
D1
d

)
for

fibrils9 (b), where A is the so called Hamaker constant,

9 To estimate the van der Waals attraction energy W attr
fib

between two absolutely rigid parallel fibrils, we assume that
h � D2 ≥ D1, introduce z axis along the fibril axes (z = 0
for the cross-section ‘1’ and z = h/8 for ‘2’ in Fig. 10b) and
note that for |z| � h the rectangular cross-sections may be re-
garded as quarter-planes with a small gap ∆(z) between their
corners: ∆(z) ∼ d+ 2π

h
D |z|, where D = (D1 +D2)/

√
2. Hence,

d is the minimum gap between the bodies10, D is the
cylinder diameter or the typical width of the fibril, and
L is the length of the parallel cylinders/fibrils (here we
assume that the cylinders/fibrils are absolutely rigid); it
is clear that for the same A:

W attr
fib /W attr

cyl ≡ Rfib/cyl ∼ (d/D)3/2 ln (D1/d)� 1. (46)

Hence, twisted fibrils can form stable dispersions, whereas
similar rod-like molecules aggregate and precipitate from
the solution, despite the entropic repulsion11 and/or
Coulombic repulsion.

We showed that under reasonable conditions the fibril
state does correspond to the lowest free energy, so that
fibril formation must be generally expected if the primary
self-assembled ribbons are not very short, i.e. if the pep-
tide concentration is not extremely low. The structure of
the fibrils is determined by the properties of the primary
ribbons only and hence is not concentration dependent.
The fibril structure in turn is a source of information
on the primary β-sheet parameters (as demonstrated in
Sect. 4). However, the fibril formation from the primary
β-sheet ribbons is likely to be kinetically hindered. Hence
a (temporary) significant increase of peptide concentra-
tion or seeding by already formed fibril fragments might

attraction energy per unit fibril length is approximately

dW/dz ∼ A
Z
..

Z +∞

0

�
∆2(z) + (x1 + x2)2

+(y1 + y2)2�−5/2
dx1dx2dy1dy2 ∼ A/∆(z)

and finally W attr
fib ∼ (Ah/D) ln(D1/d) for fibril fragment

of length δz = h/4. That gives the estimate W attr
fib /L ∼

(A/D) ln(D1/d), as in text.
10 The gap d equals to the lattice atomic size (d ' 2−4 Å)
for unsolvated bodies or to the double width of the hydration
shells for the case when the bodies are solvated.
11 Real chains (cylinders or fibrils) are never absolutely rigid;
hence, an entropy penalty due to their aggregation (in or-
der to retain their contact along long distance), resulting in
the entropic repulsion; corresponding free energy is of the or-

der W rep ∼ L kBT
�
d2l̃

�−1/3

, l̃ is persistence length of the

chain, cp. reference [14]. Semi-rigid objects (cylinders or fib-
rils) do not precipitate, if W attr < W rep. The latter condition
gives us an estimate for the precipitation threshold value of
the Hamaker constant A∗ (in the absence of other repulsions).
The ratio of such threshold values for fibrils vs cylinders is:
A∗fib/A

∗
cyl ' R−1

fib/cyl � 1 (see Eq. (46)) for the chains with

the same persistence lengths l̃ and the same d and D. In par-
ticular, for cylinders A∗cyl ' const. × kBT (d5D−3 l̃−2)1/6 with

const. = 24
√

2 (see Ref. [13] for exact numerical coefficient in
W attr

cyl ), which results in A∗cyl ' 5 × 10−22 J for l̃ = 50 µm,

d = 3 Å, D = 70 Å (T = 300 K). For fibrils with d = 3 Å,
D1 = 40 Å, D2 = 100 Å (cp. Fig. 10) and the same l̃ = 50 µm
(cp. DN1 fibrils in Fig. 2b): A∗fib ' R−1

fib/cyl A
∗
cyl ∼ 3× 10−20 J.

Note that the typical values of Hamaker constant for interac-
tions of solid (liquid) bodies across another liquid are within
the range of 10−21− 10−20 J, e.g. A ∼ (3− 9)× 10−21 J for in-
teractions of hydrocarbons across water [13]. That means that
for a typical A: A∗cyl < A < A∗fib.
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be necessary in order to start the fibrillization in a di-
lute solution. One reason for such kinetic hindering comes
from the fact that the primary ribbons are twisted and
thus cannot simply zip up into a fibril as the ribbons in a
fibril are strongly entangled (winded around each other).
A new ribbon should either ‘screw’ into the growing fibril,
or it has to split into short fragments in order to overcome
topological restrictions. Both ways imply high potential
barriers. To further discuss this point we have to estimate
the ribbon scission energy and other parameters relevant
for the β-sheet and fibril formation processes. This will be
the subject of a separate publication.

After we have observed fibril formation in our model
DN1 peptide solutions and formulated the principle of
twist stabilisation, we found a huge variety of systems
where fibrils of a well-defined diameter are formed. Be-
low we list some of them, for which the twist stabilisation
may play a crucial role.

We begin with peptide β-sheet forming systems which
are directly comparable to DN1. Fibril/fibre formation
observed in DN1 peptides looks very similar to the fib-
rillization which is characteristic for a number of the so
called amyloidosis diseases including many incurable dis-
orders (Alzheimer’s diseases, Parkinsonism, prions, arthri-
tises, haemodialysis, etc.) [15]. In each case some peptides
start forming β-sheet structures which later combine into
fibrils/fibres, that inhibit the normal living functions of
the surrounding cells. Native amyloid fibrils (protofibrils)
are believed to consist of a few (2-4) stacked face-to-face,
twisted β-sheet tapes, whereas amyloid fibres are bundles
formed by fibrils that are intertwisted like in a rope [16]
(cp. Figs. 5b, c). In all the cases, protofibrils and bundles
have well-defined diameters, in agreement with the gen-
eral consideration of Section 2. In particular, various spe-
cially selected fragments of amyloid peptides sometimes
form ‘ribbon-like’ fibrils which have very high stacking
numbers p (p > 100) [17], i.e. they comprise of hun-
dreds of β-sheet layers stacked together; this structure
resembles the one predicted in regime 4 of the diagram
in Figure 6. Among other twisted aggregates with well-
defined diameters formed from β-sheet peptides are: fi-
bres made of twisted filaments formed by many specific
silk proteins [18], β-1,3-glucan microfibrils that are capa-
ble of further self-assembling into thick fibrils found in re-
generating cell walls of yeast [19], fibrous polymers formed
by polyglutamine-containing peptide fragments associated
with Huntington disease [20], insulin [21], glucagon [22]
and many other amyloid-like fibrils including the aggre-
gates produced with enzymes or enzyme inhibitors [23].

The generic mechanism of fibril stabilization by twist
works in the following way: If the primary building blocks
are chiral and are capable of aggregation into chain-like
structures, these primary chains will be chiral (twisted)
as well. If in turn, these chains aggregate laterally into
stacks or bundles, so that the aggregation attraction en-
ergy comes into effect only when the primary chains touch
each other with their complementary sides, then the chains
will have to intertwist in order to gain the attraction en-
ergy, and hence elastic energy penalty has to be paid for

the fibril formation. The thicker the fibril, the higher the
elastic penalty. This serves to stabilize the fibril diameter
growth.

This mechanism can be applied to cellulose microfib-
rils (crystallites), which appear to be the basic struc-
tural element of the native cellulose [24]. Rope-like fibrils
(‘corkscrew’ columns, ‘threads’, ‘M-ribbons’) are found
in solutions of so called chromonics (column-forming
molecules, usually of flat disk-like aromatic structure, such
as those used as dyes or for medication, or as cholesteric
liquid crystals) in the presence of chiral additives (or if
the molecules are chiral themselves) [25–28]. In sickle-cell
hemoglobin (HbS) anemia disease, deoxyHbS molecules
(each shaped as a droplet with specific complementary-
interacting points) aggregate into helical double chains
which in turn form fibrils consisting of seven such dou-
ble chains [29]. Chiral lipid bilayers [30], and non-chiral
bilayers in the presence of chiral counter-ions [31], or in
the presence of the channel-forming α-helix peptides [32]
do stack together and form twisted ribbon-like fibrils. Ex-
tended range of hierarchical fibrillar structures (protofib-
rils which form fibrils, these fibrils in turn stack together
either into “fibril-ribbons” (transforming into tubes), or
at other conditions into “cables”) are found in solutions
of calcitonin peptide hormone [23]. Complementary as-
sociating derivatives of tartaric acid [33], or of chiral
1,2 diaminocyclohexane with (S,S)1,2-cyclohexanol [34],
substituted porphyrins and phthalocyanines [35], deriva-
tives of carbohydrates [34] and cholesterol [35,36], lithium
salts of D (or L)-12-hydroxystearic acid [35], N-n-octyl-D-
gluconamide [34,37], copper β-diketonates [35], chiral cy-
clohexanediamides [38], all of them do form some helical
polymeric aggregates. In all of these cases, perfect twisted
fibrils of fixed width are found and the primary chains can
be easily distinguished to be far too thin to expect any
other mechanism of stabilisation (e.g. amphiphilic stabili-
sation) apart from the stabilisation by twist. The twist sta-
bilisation mechanism is possibly also applicable (although
kinetic reasons cannot be excluded) to helical polyacety-
lene fibrillar morphologies formed with a chiral nematic
reaction field [39].

We thank T. McLeish for useful discussions on the topic of
the paper. The work was supported by the UK Engineer-
ing and Physical Sciences Research Council (GR/L37694 and
GR/L34983). One of us (AA) wishes to thank the Royal Soci-
ety for the award of a Dorothy Hodgkin Fellowship.

Appendix A: The asymptotic limit of thin
fibrils (small β)

For thin enough fibril,

β =
apγ

2
� 1 (A.1)

we can represent all functions in Section 2.2 as truncated
series of β. It is more convenient to start with the free
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energy in the form (10); the essential term in curly brack-
ets can be approximated as (we use variables γ and p for
convenience here)

k̃

24
(ap)2 γ

4

γ2
0

(
1− 3

10
(apγ)2

)
+

1
2

(
γ

γ0
− 1
)2

− 1
2
− 1

12
(ap)2 γ

3

γ0

(
γ

γ0
− 1
)

+
(ap)4

160
γ5

γ0

(
3
γ

γ0
− 2
)

+
σ̃

apγ0
· (A.2)

The minimization of equation (A.2) over γ and p produces
the following system of equations:

(apγ)2

6

[
γ

γ0

(
k̃ − 2

)
+

3
2

− 9
20

(apγ)2

(
γ

γ0

(
k̃ − 3

2

)
+

5
6

)]
=
γ0 − γ
γ0

(A.3)

(paγ0)3

[
k̃ + 2

(
γ0

γ
− 1
)

+
3
5

(paγ0)2

(
γ

γ0

)2

×
(
−k̃ +

3
2
− γ

γ0

)]
= 12σ̃

(
γ0

γ

)4

· (A.4)

Let us analyse these equations (which should be solved for
γ and p) in some asymptotic regimes.

A.1 Regime 1

The simplest situation is when the left hand side of
equation (A.3) is small compared to unity (note that it
contains a small factor apγ, Eq. (A.1)), hence

γ ' γ0 (A.5)

and

γ0 − γ
γ0

' (apγ0)2

6

[
k̃ − 1

2
− 9

20
(apγ0)2

(
k̃ − 2

3

)]
(A.6)

12σ̃ ' (apγ0)3

[
k̃ + 2

(
γ0

γ
− 1
)
− 3

5
(apγ0)2

(
k̃ − 1

2

)]
.

(A.7)

One can easily check that the solution to these equations
does not show any singularity at k̃ ' 1/2. Hence we can
safely assume that ∣∣∣k̃ − 1/2

∣∣∣ & (apγ0)2 (A.8)

(which is true in practice, see Eq. (36)). Assuming also
that k̃ dominates over other terms in the square brackets
in equation (A.7):

k̃ &
∣∣∣∣γ0

γ
− 1
∣∣∣∣ , k̃ & (apγ0)2

∣∣∣∣k̃ − 1
2

∣∣∣∣ , (A.9)

we get the following solution to equations (A.6, A.7):

paγ0 '
(

12σ̃
k̃

)1/3

(A.10)

γ0 − γ
γ0

'
(

12σ̃
k̃

)2/3
k̃ − 1/2

6
in regime 1 (A.11)

(we used the condition (A.8) here)12. The results above
are true as long as conditions (A.1, A.5, A.9) are satisfied,
i.e.

σ̃ � 2
3
k̃ (A.12)

σ̃ �
(

3
2k̃

)1/2

(A.13)

σ̃ �


5
√

15
32

k̃, if k̃ & 1
2 ;

5
8

(
15
2
k̃5

)1/2

, if k̃ . 1
2 ·

(A.14)

One can easily check that conditions (A.14) are stronger
than condition (A.12). Thus the corresponding regime 1
(see Fig. 6) is defined by inequations (A.13, A.14).

The fibrils are stable if E < 0 and p ≥ 2, i.e. if

σ̃ & 2
3
k̃ (γ0a)3 in regime 1 (A.15)

(see Eqs. (10, A.10)). Note that aγ0 = 2πa/h0 is usually
small, hence a small enough σ̃ may be compatible with
the condition (A.15).

A.2 Regime 2

Now we start again with equations (A.6, A.7). In accor-
dance with equation (A.6) the second and the third terms
in the square brackets of equation (A.7) are of the same
order (note the condition (A.8)). Let us now assume that
these two terms dominate over k̃ in equation (A.7) (note
that this assumption implies that k̃ must be small). For
this case the system of equations (A.6, A.7) has the fol-
lowing solution:

paγ0 ' (90σ̃)1/5 (A.16)

12 Note that for small k̃ < 0.5 the resulting fibril twist γ,
equation (A.11), is larger than γ0. However the outer ribbons
in the fibril have effective twist γ/(1 + γ2ρ2

j) which is still

smaller than γ0 (see Eq. (7)): for k̃ � 1 and ρmax ' ap/2 the ef-

fective twist is γ/(1+γ2a2p2/4) ' γ0

�
1− (1/6)(12σ̃/k̃)2/3

�
<

γ0, see equations (A.10, A.11). One can easily check using
equations (5, 7, A.10, A.11) that the average effective twist of
individual ribbons in the fibril for k̃ � 1 is nearly equal to γ0.
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γ0 − γ
γ0

' −
(

25σ̃2

768

)1/5

in regime 2 (A.17)

which is valid if

σ̃ � 16
45

(A.18)

σ̃ � 5
8

(
15
2
k̃5

)1/2

· (A.19)

The two conditions above (specifying regime 2, see Fig. 6)
are equivalent to the condition (A.1) and to the condi-
tion that k̃ is subdominant in the r.h.s. of equation (A.7).
Note that γ ' γ0 since σ̃ � 16

√
3/5 which follows from

inequality (A.18).
In regime 2 the fibrils are stable (E < 0, p ≥ 2) if

σ̃ & 16
45

(γ0a)5 in regime 2 (A.20)

(see Eqs. (10, A.2, A.16, A.17, A.19). Note that in
regime 2 the parameter k̃ drops out of the resulting
equations (A.16, A.17, A.20).

A.3 Regime 3: strongly untwisted thin fibrils

One can easily understand that the situation opposite to
the one considered above (in regimes 1 and 2: γ ' γ0)
is when γ � γ0 (we still consider the case of thin fibrils,
see condition (A.1)). From equations (A.3, A.4) we get
k̃(γ/γ0) ' 6/(apγ)2 � 1, and finally

γ ' γ0
3

2k̃σ̃2
(A.21)

apγ0 '
4k̃σ̃3

3
in regime 3. (A.22)

This situation is realized if the following conditions are
satisfied:

σ̃ � 1 (A.23)

σ̃ �
(

3
2k̃

)1/2

(A.24)

which follow from equation (A.1) and the condition γ �
γ0. This regime is indicated as regime 3 (‘strongly un-
twisted thin fibrils’) in the diagram of Figure 6.

The fibril is stable (E < 0, p ≥ 2) provided that (see
Eqs. (10, A.2, A.21, A.22))

σ̃ & 1
2
γ0a in regime 3. (A.25)

Note that from the conditions (A.24, A.25) it follows
that p � 1 as it is required for our consideration
(cp. Eq. (A.15)).

Appendix B: The asymptotic case of thick
sheet-like fibrils (large β)

B.1 Regime 4: wide sheets

The limit opposite to that of (A.1) is when the stack
formed by ribbons is very wide:

β � 1. (B.1)

Under this condition the functions (12, 15) can be approx-
imated as

C ' π

2
; D ' 0; C′ ' 1

β2
; D′ ' − 1

β2
, (B.2)

and hence the system of equations (13, 14) has the follow-
ing solution:

β ' 4
(π − σ̃)

; β0 '
2π
(

1 + k̃
)

(π − σ̃)2 (B.3)

i.e.

γ ' γ0
2 (π − σ̃)

π
(

1 + k̃
) ; p ' 1

aγ0

2π
(

1 + k̃
)

(π − σ̃)2 · (B.4)

The following inequalities should be fulfilled in order
to satisfy the condition (B.1)

0 < π − σ̃ � 1 (B.5)

which define regime 4 (‘wide sheets’) in the diagram
of Figure 6. These conditions ensure that γ � γ0 and
paγ � 1, i.e. the stack (fibril) is strongly untwisted and
it is very wide (but finite) even when compared to its twist
period h (which is much longer than the primary one, h0).
Note also that p� 1 as a . h0.

Wide fibrils (condition B.1) are stable (E < 0) if (see
Eqs. (10, B.3))

σ̃

γ0a
& 1

2
− (π − σ̃)

4β0
(B.6)

Note that the last term in equation (B.6) is small in ac-
cordance with equations (B.3, B.5), hence this condition
is in fact very close to (A.25).

B.2 Regime 5: infinite sheets

When σ̃, equation (11), approaches π from below, the equi-
librium sheet-like fibril thickness tends to infinity, simul-
taneously the fibril looses its twist:

p→∞; γ → 0; β →∞; β0/β →∞ (B.7)

see equation (B.4). Finite fibrils are replaced by infinite
untwisted sheets if σ̃ ≥ π, i.e. if

σab

γ0ktwist
≥ π (B.8)
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(regime 5 of Fig. 6). The stability condition is now exactly

σ̃

γ0a
>

1
2
· (B.9)

Note that in regime 5 the term in the curly brackets in
equation (10) is tending to zero.
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